Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Ter Arkh ; 94(11): 1326-1332, 2022 Dec 26.
Article in Russian | MEDLINE | ID: covidwho-20239066

ABSTRACT

The hepatic consequences of SARS-CoV-2 infection are now recognized as an important component of CoronaVIrus Disease 2019 (COVID-19). This aspect is most clinically relevant in patients with pre-existing chronic liver disease (CKD), who are at extremely high risk of severe COVID-19 and death. Risk factors for severe CKD, especially in people with liver cirrhosis and non-alcoholic fatty liver disease, are the direct and indirect cytotoxic effects of coronavirus against the background of systemic inflammation, blood clotting disorders and immune dysfunction. The severe negative impact of the pandemic in the presence of CKD and the difficulties of patient relationships contribute to the progressive increase in the global burden of liver disease on the health system.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Renal Insufficiency, Chronic , Humans , Pandemics , SARS-CoV-2 , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/therapy
2.
Clin Mol Hepatol ; 29(Suppl): s86-s102, 2023 02.
Article in English | MEDLINE | ID: covidwho-2299507

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by excess fat accumulation in the liver. It is closely associated with metabolic syndrome, and patients with NAFLD often have comorbidities such as obesity, type 2 diabetes mellitus, and dyslipidemia. In addition to liver-related complications, NAFLD has been associated with a range of non-liver comorbidities, including cardiovascular disease, chronic kidney disease, and sleep apnea. Cardiovascular disease is the most common cause of mortality in patients with NAFLD, and patients with NAFLD have a higher risk of developing cardiovascular disease than the general population. Chronic kidney disease is also more common in patients with NAFLD, and the severity of NAFLD is associated with a higher risk of developing chronic kidney disease. Sleep apnea, a disorder characterized by breathing interruptions during sleep, is also more common in patients with NAFLD and is associated with the severity of NAFLD. The presence of non-liver comorbidities in patients with NAFLD has important implications for the management of this disease. Treatment of comorbidities such as obesity, type 2 diabetes mellitus, and dyslipidemia may improve liver-related outcomes in patients with NAFLD. Moreover, treatment of non-liver comorbidities may also improve overall health outcomes in patients with NAFLD. Therefore, clinicians should be aware of the potential for non-liver comorbidities in patients with NAFLD and should consider the management of these comorbidities as part of the overall management of this disease.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Dyslipidemias , Non-alcoholic Fatty Liver Disease , Renal Insufficiency, Chronic , Sleep Apnea Syndromes , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Diabetes Mellitus, Type 2/complications , Risk Factors , Cardiovascular Diseases/complications , Cardiovascular Diseases/epidemiology , Obesity/complications , Obesity/epidemiology , Renal Insufficiency, Chronic/complications , Dyslipidemias/complications , Dyslipidemias/epidemiology , Sleep Apnea Syndromes/complications
3.
Expert Rev Gastroenterol Hepatol ; 17(6): 603-613, 2023.
Article in English | MEDLINE | ID: covidwho-2301791

ABSTRACT

INTRODUCTION: The novel coronavirus disease 2019 has thrown light on various heterogeneous afflictions of newly emerging viruses on the human body. Early reports demonstrated direct effect of novel coronavirus on the liver, but subsequently, this did not stand up to validation. The SARS-CoV-2 virus affects the liver differentially; in healthy compared to those with preexisting liver disease. AREAS COVERED: This exhaustive paper reviews the current, literature on mechanisms by which COVID-19 affects the healthy liver and those with preexisting liver disease such as alcohol-related and nonalcoholic fatty liver, autoimmune liver disease, chronic liver disease and cirrhosis, hepatocellular carcinoma, viral hepatitis, and liver transplant recipients, with special mention on drug-and herb-induced liver injury with COVID-19 therapies. Search methodology: the review (Dec. 2022 - Jan. 2023) is based on PubMed (NLM) search using the keyword 'COVID' with supplementary searches using 'fibrosis;' 'liver;' 'cirrhosis;' 'CLD;' 'NAFLD;' 'NASH;' 'hepatocellular carcinoma;' 'hepatitis;' 'fatty liver;' 'alcohol;' 'viral;' 'transplant;' and 'liver failure.' EXPERT OPINION: Direct liver tropism of SARS-CoV-2 does not cause liver damage. Adverse events following infection depend on the severity of liver disease, the severity of COVID-19, and other risk factors such as metabolic syndrome and older age. Alcohol-related liver disease independently predicts adverse outcomes.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , COVID-19/complications , SARS-CoV-2 , Liver Cirrhosis/etiology , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/complications
4.
Clin Transl Gastroenterol ; 14(4): e00575, 2023 04 01.
Article in English | MEDLINE | ID: covidwho-2288960

ABSTRACT

The increased prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide is particularly worrisome, as no medication has been approved to treat the disease. Lifestyle modifications aimed at promoting weight loss and weight maintenance remain the current first-line treatment for NAFLD. However, due to the lack of standard and scientific guidance and out-of-hospital supervision, long-term outcomes of lifestyle interventions for patients with NAFLD are often unsatisfactory. In addition, the COVID-19 pandemic aggravated this dilemma. At the same time, digital therapeutics (DTx) are expected to be a new method for the convenient management and treatment of patients with NAFLD and are attracting a great deal of attention. DTx, which provide evidence-based medicine through software programs for remote intervention in preventing, treating, or managing diseases, overcome the drawbacks of traditional treatment. The efficacy of the approach has already been demonstrated for some chronic diseases, but DTx have not been fully developed for NAFLD. This study reviews the concepts, clinical value, and practical applications related to DTx, with an emphasis on recommendations based on unmet needs for NAFLD. A better understanding of the current state will help clinicians and researchers develop high-quality, standardized, and efficient DTx products, with the aim of optimizing the prognosis of patients with NAFLD.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/epidemiology , Pandemics , COVID-19/epidemiology , Life Style , Prognosis
6.
World J Gastroenterol ; 29(6): 908-916, 2023 Feb 14.
Article in English | MEDLINE | ID: covidwho-2268452

ABSTRACT

Coronavirus disease 2019 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 that manifests as a variety of clinical manifestations, including liver damage commonly detected by a hepatocellular pattern from liver function tests. Liver injury is associated with a worse prognosis overall. Conditions associated with the severity of the disease include obesity and cardiometabolic comorbidities, which are also associated with nonalcoholic fatty liver disease (NAFLD). The presence of NAFLD, similarly to obesity, is associated with an unfavourable impact on the coronavirus disease 2019 outcome. Individuals with these conditions could present with liver damage and elevated liver function tests due to direct viral cytotoxicity, systemic inflammation, ischemic or hypoxic liver damage or drug side effects. However, liver damage in the setting of NAFLD could also be attributed to a pre-existing chronic low-grade inflammation associated with surplus and dysfunctional adipose tissue in these individuals. Here we investigate the hypothesis that a pre-existing inflammatory status is exacerbated after severe acute respiratory syndrome coronavirus 2 infection, which embodies a second hit to the underestimated liver damage.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , COVID-19/complications , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Liver , Obesity/complications , Obesity/epidemiology , Inflammation/complications
7.
Yonsei Med J ; 64(4): 269-277, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2282113

ABSTRACT

PURPOSE: We aimed to investigate the prevalences of obesity, abdominal obesity, and non-alcoholic fatty liver disease (NAFLD) among children and adolescents during the coronavirus disease 2019 (COVID-19) outbreak. MATERIALS AND METHODS: This population-based study investigated the prevalences of obesity, abdominal obesity, and NAFLD among 1428 children and adolescents between 2018-2019 and 2020. We assessed the prevalences of obesity, abdominal obesity, and NAFLD according to body mass index, age, sex, and residential district. Logistic regression analyses were performed to determine the relationships among obesity, abdominal obesity, and NAFLD. RESULTS: In the obese group, the prevalence of abdominal obesity increased from 75.55% to 92.68%, and that of NAFLD increased from 40.68% to 57.82%. In age-specific analysis, the prevalence of abdominal obesity increased from 8.25% to 14.11% among participants aged 10-12 years and from 11.70% to 19.88% among children aged 13-15 years. In residential district-specific analysis, the prevalence of both abdominal obesity and NAFLD increased from 6.96% to 15.74% in rural areas. In logistic regression analysis, the odds ratio of abdominal obesity for NAFLD was 11.82. CONCLUSION: Our results demonstrated that the prevalences of abdominal obesity and NAFLD increased among obese Korean children and adolescents and in rural areas during the COVID-19 outbreak. Additionally, the prevalence of abdominal obesity increased among young children. These findings suggest the importance of closely monitoring abdominal obesity and NAFLD among children during COVID-19, focusing particularly on obese young children and individuals in rural areas.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Adolescent , Humans , Child , Child, Preschool , Non-alcoholic Fatty Liver Disease/epidemiology , Obesity, Abdominal/complications , Obesity, Abdominal/epidemiology , Prevalence , COVID-19/epidemiology , Obesity/epidemiology , Body Mass Index , Republic of Korea/epidemiology
8.
J Infect Public Health ; 16(5): 673-679, 2023 May.
Article in English | MEDLINE | ID: covidwho-2232105

ABSTRACT

BACKGROUND: People living with human immunodeficiency virus (PLWH) are at an increased risk of nonalcoholic fatty liver disease (NAFLD) but how these patients react to COVID-19 infection is unclear. We examined the clinical characteristics and outcomes of patients with and without nonalcoholic fatty liver disease (NAFLD) among people living with human immunodeficiency virus (PLWH) diagnosed with COVID-19. METHODS: A multicenter, retrospective cohort study was conducted using TriNetX. Participants diagnosed with COVID-19 between January 20, 2020, and October 31, 2021, in PLWH were identified and divided into cohorts based on preexisting NAFLD. The primary outcome was all-cause mortality, and secondary outcomes were hospitalization, severe disease, critical care, need for mechanical ventilation, and acute kidney injury(AKI). Propensity score matching (PSM) mitigated the imbalance among group covariates. Risk ratios (RR) with 95 % confidence intervals (CI) were calculated. RESULTS: Of the 5012 PLWH identified with confirmed COVID-19 during the study period, 563 had a diagnosis of NAFLD. After PSM, both groups were well-matched with 561 patients. The primary outcome did not differ between the cohorts at 30-days, even after a fully adjusted analysis, and the risk of all-cause mortality did not differ at 60 and 90 days. NAFLD had a significantly higher risk for hospitalization rates (RR 1.32; 95 % CI, 1.06-1.63) and AKI (RR 2.55; 95 % CI 1.42-4.57) than the non-NAFLD group at 30 days. No other differences were detected in other secondary outcome measures. CONCLUSIONS: Preexisting NAFLD is associated with an increased risk for hospitalization and AKI among PLWH infected with COVID-19. The potential role of NAFLD in developing severe COVID-19 among PLWH remains to be elucidated in future studies. Still, this study indicates the need for careful monitoring of this at-risk population.


Subject(s)
COVID-19 , HIV Infections , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , COVID-19/complications , COVID-19/therapy , HIV , Retrospective Studies , HIV Infections/complications , HIV Infections/epidemiology
9.
World J Gastroenterol ; 29(4): 656-669, 2023 Jan 28.
Article in English | MEDLINE | ID: covidwho-2230635

ABSTRACT

The coronavirus disease 2019 (COVID-19) hit the entire world as a global pandemic and soon became the most important concern for all patients with chronic diseases. An early trend in higher mortality in patients with acute respiratory distress attracted all researchers to closely monitor patients for the involvement of other systems. It soon became apparent that patients with chronic liver diseases are at increased risk of mortality given their cirrhosis-associated immune dysfunction. Additionally, liver function abnormalities were noted in patients with severe COVID-19. Profound cytokine storm, direct viral infection, drugs and reactivation of viral infections were causes of deranged liver functions. Here, we discuss the relation between COVID-19 and chronic liver disease, specifically cirrhosis, hepatitis B, hepatitis C, and non-alcoholic fatty liver disease (NAFLD), as well as the liver manifestations of COVID-19. The metabolic syndrome, obesity, diabetes mellitus and NAFLD were found to worsen outcome in different studies reported worldwide. Decompensated cirrhosis should be considered a risk factor for death and severe COVID-19. Recently, COVID-19 related cholangiopathy has also been reported with changes of secondary sclerosing cholangitis. The long-term persistence of viral antigens in gut epithelia raises concern regarding the future risk of autoimmune liver diseases.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , COVID-19/complications , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Liver Cirrhosis/complications , Risk Factors
10.
World J Gastroenterol ; 29(3): 487-502, 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2217140

ABSTRACT

People across the world are affected by the "coronavirus disease 2019 (COVID-19)", brought on by the "SARS-CoV type-2 coronavirus". Due to its high incidence in individuals with diabetes, metabolic syndrome, and metabolic-associated fatty liver disease (MAFLD), COVID-19 has gained much attention. The metabolic syndrome's hepatic manifestation, MAFLD, carries a significant risk of type-2-diabetes. The link between the above two conditions has also drawn increasing consideration since MAFLD is intricately linked to the obesity epidemic. Independent of the metabolic syndrome, MAFLD may impact the severity of the viral infections, including COVID-19 or may even be a risk factor. An important question is whether the present COVID-19 pandemic has been fueled by the obesity and MAFLD epidemics. Many liver markers are seen elevated in COVID-19. MAFLD patients with associated comorbid conditions like obesity, cardiovascular disease, renal disease, malignancy, hypertension, and old age are prone to develop severe disease. There is an urgent need for more studies to determine the link between the two conditions and whether it might account for racial differences in the mortality and morbidity rates linked to COVID-19. The role of innate and adaptive immunity alterations in MAFLD patients may influence the severity of COVID-19. This review investigates the implications of COVID-19 on liver injury and disease severity and vice-versa. We also addressed the severity of COVID-19 in patients with prior MAFLD and its potential implications and therapeutic administration in the clinical setting.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Humans , COVID-19/complications , Metabolic Syndrome/complications , Metabolic Syndrome/epidemiology , Pandemics , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , SARS-CoV-2 , Obesity/complications , Obesity/epidemiology
12.
Obesity (Silver Spring) ; 31(5): 1383-1391, 2023 05.
Article in English | MEDLINE | ID: covidwho-2209167

ABSTRACT

OBJECTIVE: Nonalcoholic fatty liver disease (NAFLD), the most common liver disease among youth with obesity, precedes more severe metabolic and liver diseases. However, the impact of the Sars-CoV-2 global pandemic on the prevalence and severity of NAFLD and the associated metabolic phenotype among youth with obesity is unknown. METHODS: Participants were recruited from the Yale Pediatric Obesity Clinic during the Sars-CoV-2 global pandemic (August 2020 to May 2022) and were compared with a frequency-matched control group of youth with obesity studied before the Sars-CoV-2 global pandemic (January 2017 to November 2019). Glucose metabolism differences were assessed during an extended 180-minute oral glucose tolerance test. Magnetic resonance imaging-derived proton density fat fraction (PDFF) was used to determine intrahepatic fat content in those with NAFLD (PDFF ≥ 5.5). RESULTS: NAFLD prevalence increased in participants prior to (36.2%) versus during the Sars-CoV-2 pandemic (60.9%), with higher PDFF values observed in participants with NAFLD (PDFF ≥ 5.5%) during versus before the pandemic. An increase in visceral adipose tissue and a hyperresponsiveness in insulin secretion during the oral glucose tolerance test were also observed. CONCLUSIONS: Hepatic health differences were likely exacerbated by environmental and behavioral changes associated with the pandemic, which are critically important for clinicians to consider when engaging in patient care to help minimize the future risk for metabolic perturbations.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , United States/epidemiology , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/pathology , SARS-CoV-2 , Pandemics , COVID-19/epidemiology , COVID-19/pathology , Liver/diagnostic imaging , Liver/pathology , Obesity/epidemiology , Obesity/pathology , Magnetic Resonance Imaging
13.
World J Gastroenterol ; 29(2): 367-377, 2023 Jan 14.
Article in English | MEDLINE | ID: covidwho-2201063

ABSTRACT

The pandemics of coronavirus disease 2019 (COVID-19) and non-alcoholic fatty liver disease (NAFLD) coexist. Elevated liver function tests are frequent in COVID-19 and may influence liver damage in NAFLD, while preexisting liver damage from NAFLD may influence the course of COVID-19. However, the prognostic relevance of this interaction, though, is unclear. Obesity is a risk factor for the presence of NAFLD as well as a severe course of COVID-19. Cohort studies reveal conflicting results regarding the influence of NAFLD presence on COVID-19 illness severity. Striking molecular similarities of cytokine pathways in both diseases, including postacute sequelae of COVID-19, suggest common pathways for chronic low-activity inflammation. This review will summarize existing data regarding the interaction of both diseases and discuss possible mechanisms of the influence of one disease on the other.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , COVID-19/complications , COVID-19/metabolism , Risk Factors , Inflammation/metabolism , Obesity/complications , Obesity/epidemiology , Obesity/metabolism , Liver/metabolism
14.
BMC Infect Dis ; 22(1): 384, 2022 Apr 17.
Article in English | MEDLINE | ID: covidwho-2139166

ABSTRACT

BACKGROUND: Research on the association of non-alcoholic fatty liver disease (NAFLD) with prognosis in COVID-19 has been limited. We investigated the association between the fatty liver index (FLI), a non-invasive and simple marker of NAFLD, and the severe complications of COVID-19 patients in South Korea. METHODS: We included 3122 COVID-19-positive patients from the nationwide COVID-19 cohort dataset in South Korea between January and June 2020. The FLI was calculated using triglyceride, body mass index, glutamyl transpeptidase, and waist circumference, which were obtained from the national health screening program data. Severe complications related to COVID-19 were defined as the composite of mechanical ventilation, intensive care unit treatment, high-oxygen flow therapy, and death within 2 months after a COVID-19 infection. We performed a multivariate logistic regression analysis for the development of severe complications in COVID-19 patients. RESULTS: The mean ± standard deviation of FLI were 25.01 ± 22.64. Severe complications from COVID-19 occurred in 223 (7.14%) patients, including mechanical ventilation in 82 (2.63%) patients, ICU admission in 126 (4.04%), high-flow oxygen therapy in 75 (2.40%), and death in 94 (3.01%) patients, respectively. The multivariate analysis indicated that the highest tertile (T3) of FLI was positively associated with severe complications from COVID-19 (adjusted odds ratio (OR): 1.77, 95% confidence interval (CI) (1.11-2.82), P = 0.017) compared with the lowest tertile (T1). CONCLUSIONS: Our study demonstrated that FLI, which represents NAFLD, was positively associated with an increased risk of severe complications from COVID-19. FLI might be used as a prognostic marker for the severity of COVID-19.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , COVID-19/complications , COVID-19/epidemiology , Cohort Studies , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Oxygen , Retrospective Studies , Risk Factors
15.
World J Gastroenterol ; 28(40): 5818-5826, 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2110319

ABSTRACT

There is increasing incidence and prevalence of acute and chronic liver diseases (CLDs) all over the world which influence the quality of life and can give rise to life threatening complications. The burden of advanced liver disease due to hepatitis B has been controlled by antivirals but its eradication is difficult soon. Highly effective directly acting antiviral therapy has reduced the burden of hepatitis C but is partially offset by increasing IV drug abuse. Non-alcoholic fatty liver disease pandemic is on and there is recent alarming increase in alcohol related liver disease, both of which have no drug cure apart from control of the risk factors. Genetic factors have been identified in progression of all forms of CLD. Due to better management of complications of CLD, the life span of patients have increased spiking the number of hepatocellular carcinoma (HCC) and patients needing liver transplantation (LT). The present severe acute respiratory syndrome coronavirus pandemic has affected the outcome CLD including LT in addition to causing acute hepatitis. Better diagnostics and therapeutics are available for liver fibrosis, portal hypertension, HCC and post LT management and many drugs are under trial. The present review summarises the current scenario of the epidemiology and the advances in diagnosis and treatment of liver diseases including their complications like portal hypertension, HCC and LT.


Subject(s)
Carcinoma, Hepatocellular , Hypertension, Portal , Liver Neoplasms , Liver Transplantation , Non-alcoholic Fatty Liver Disease , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/etiology , Liver Neoplasms/epidemiology , Liver Neoplasms/therapy , Liver Neoplasms/diagnosis , Quality of Life , Liver Transplantation/adverse effects , Liver Cirrhosis/pathology , Antiviral Agents/therapeutic use , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/therapy , Hypertension, Portal/etiology
16.
Eur J Clin Nutr ; 76(9): 1332-1338, 2022 09.
Article in English | MEDLINE | ID: covidwho-1947320

ABSTRACT

BACKGROUND: Lifestyle intervention is the mainstay therapy for Non-Alcoholic Fatty Liver Disease (NAFLD). We aimed to assess the efficacy of an intensive (9 contact points in 6 months) weight-loss intervention among patients with obesity (BMI 25-39.9 kg/m2) and NAFLD in north India. METHODS: A total of 140 patients (18-60 years) with obesity and NAFLD were randomized into intervention (n = 70) and control (n = 70) groups, at a tertiary-care hospital. Weight, anthropometric parameters, Controlled Attenuation Parameter (CAP), Liver Stiffness Measurement (LSM), liver enzymes, grade of fatty liver and HOMA-IR were measured at baseline (T0) and 6 months (T6). There was a high drop-out, exacerbated by the Covid-19 pandemic. Completers comprised of 59 participants (n = 30 intervention, n = 29 control). Intention to treat analysis was done. RESULTS: At T6, ALT normalized in significantly higher (p = 0.03) number of cases in the intervention arm (66.7%) versus control arm (18.2%). No significant improvement was seen in other metabolic, ultrasound or anthropometric outcomes. Weight (p < 0.001), AST (p = 0.01), ALT (p = 0.02), body fat% (p < 0.001), WC (p < 0.001) and CAP (p < 0.001) significantly improved within the intervention arm along with a trend of improvement in steatosis and HOMA-IR. Control group showed significant decrease in weight (p < 0.001), WC (p < 0.001) and CAP (p = 0.02). Twice the number of patients in intervention arm (46.7%) lost ≥5% weight, compared to control arm (24.1%) (p = 0.07). CONCLUSION: The intensive weight-loss intervention was not effective in improving the treatment outcomes among patients with obesity and NAFLD. However, given the potential of our intervention, we recommend larger trials with more intensive weight-loss interventions.


Subject(s)
COVID-19 , Non-alcoholic Fatty Liver Disease , Humans , Liver/diagnostic imaging , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/therapy , Obesity/complications , Obesity/therapy , Pandemics , Weight Loss
18.
Curr Opin Gastroenterol ; 38(3): 251-260, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1937782

ABSTRACT

PURPOSE OF REVIEW: In 2020, a novel comprehensive redefinition of fatty liver disease was proposed by an international panel of experts. This review aims to explore current evidence regarding the impact of this new definition on the current understanding of the epidemiology, pathogenesis, diagnosis, and clinical trials for fatty liver disease. RECENT FINDINGS: The effectiveness of metabolic dysfunction-associated fatty liver disease (MAFLD) was compared to the existing criteria for nonalcoholic fatty liver disease (NAFLD). Recent data robustly suggest the superior utility of MAFLD in identifying patients at high risk for metabolic dysfunction, the hepatic and extra-hepatic complications, as well as those who would benefit from genetic testing, including patients with concomitant liver diseases. This change in name and criteria also appears to have improved disease awareness among patients and physicians. SUMMARY: The transformation in name and definition from NAFLD to MAFLD represents an important milestone, which indicates significant tangible progress towards a more inclusive, equitable, and patient-centred approach to addressing the profound challenges of this disease. Growing evidence has illustrated the broader and specific contexts that have tremendous potential for positively influencing the diagnosis and treatment. In addition, the momentum accompanying this name change has included widespread public attention to the unique burden of this previously underappreciated disease.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology
19.
Nutrients ; 14(14)2022 Jul 07.
Article in English | MEDLINE | ID: covidwho-1928617

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease is a chronic disease caused by the accumulation of fat in the liver related to overweight and obesity, insulin resistance, hyperglycemia, and high levels of triglycerides and leads to an increased cardiovascular risk. It is considered a global pandemic, coinciding with the pandemic in 2020 caused by the "coronavirus disease 2019" (COVID-19). Due to COVID-19, the population was placed under lockdown. The aim of our study was to evaluate how these unhealthy lifestyle modifications influenced the appearance of metabolic alterations and the increase in non-alcoholic fatty liver disease. METHODS: A prospective study was carried out on 6236 workers in a Spanish population between March 2019 and March 2021. RESULTS: Differences in the mean values of anthropometric and clinical parameters before and after lockdown were revealed. There was a statistically significant worsening in non-alcoholic fatty liver disease (NAFLD) and in the insulin resistance scales, with increased body weight, BMI, cholesterol levels with higher LDL levels, and glucose and a reduction in HDL levels. CONCLUSIONS: Lockdown caused a worsening of cardiovascular risk factors due to an increase in liver fat estimation scales and an increased risk of presenting with NAFLD and changes in insulin resistance.


Subject(s)
COVID-19 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Adult , COVID-19/epidemiology , Communicable Disease Control , Humans , Liver/metabolism , Longitudinal Studies , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/metabolism , Pandemics , Prospective Studies , Risk Factors
20.
Lancet Diabetes Endocrinol ; 10(4): 284-296, 2022 04.
Article in English | MEDLINE | ID: covidwho-1915200

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has become an epidemic, much like other non-communicable diseases (NCDs), such as cancer, obesity, diabetes, and cardiovascular disease. The pathophysiology of NAFLD, particularly involving insulin resistance and subclinical inflammation, is not only closely linked to that of those NCDs but also to a severe course of the communicable disease COVID-19. Genetics alone cannot explain the large increase in the prevalence of NAFLD during the past 2 decades and the increase that is projected for the next decades. Impairment of glucose and lipid metabolic pathways, which has been propelled by the worldwide increase in the prevalence of obesity and type 2 diabetes, is most likely behind the increase in people with NAFLD. As the prevalence of NAFLD varies among subgroups of patients with diabetes and prediabetes identified by cluster analyses, stratification of people with diabetes and prediabetes by major pathological mechanistic pathways might improve the diagnosis of NAFLD and prediction of its progression. In this Review, we aim to understand how diabetes can affect the development of hepatic steatosis and its progression to advanced liver damage. First, we emphasise the extent to which NAFLD and diabetes jointly occur worldwide. Second, we address the major mechanisms that are involved in the pathogenesis of NAFLD and type 2 diabetes, and we discuss whether these mechanisms place NAFLD in an important position to better understand the pathogenesis of NCDs and communicable diseases, such as COVID-19. Third, we address whether this knowledge can be used for personalised treatment of NAFLD in the future. Finally, we discuss the current treatment strategies for people with type 2 diabetes and their effectiveness in treating the spectrum of hepatic diseases from simple steatosis to non-alcoholic steatohepatitis and hepatic fibrosis.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Insulin Resistance , Non-alcoholic Fatty Liver Disease , Prediabetic State , COVID-19/complications , COVID-19/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Humans , Liver/metabolism , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/epidemiology , Prediabetic State/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL